Background: Beginning at a young age, children with cystic fibrosis (CF) embark on demanding care regimens that pose challenges to parents. We examined the extent to which clinical, demographic and psychosocial features inform patterns of adherence to pulmonary therapies and how these patterns can be used to develop clinical personas, defined as aspects of adherence barriers that are presented by parents and/or perceived by clinicians, in order to enhance personalized CF care delivery.
Methods: We undertook an explanatory sequential mixed-methods study consisting of i) multivariate clustering to create clusters corresponding to parental adherence patterns (quantitative phase); ii) parental participant interviews to create clinical personas interpreted from clustering (qualitative phase). Clinical, demographic and psychosocial features were used in supervised clustering against clinical endpoints, which included adherence to airway clearance and aerosolized medications and self-efficacy score, which was used as a feature for modeling adherence. Clinical implications were developed for each persona by combing quantitative and qualitative data (integration phase).
Results: The quantitative phase showed that the 87 parent participants were segmented into three distinct patterns of adherence based on use of aerosolized medication and practice of airway clearance. Patterns were primarily influenced by self-efficacy, distance to CF care center and child BMI percentile. The two key patterns that emerged for the self-efficacy model were most heavily influenced by distance to CF care center and child BMI percentile. Eight clinical personas were developed in the qualitative phase from parent and clinician participant feedback of latent components from these models. Findings from the integration phase include recommendations to overcome specific challenges with maintaining treatment regimens and increasing support from social networks.
Conclusions: Adherence patterns from multivariate models and resulting parent personas with their corresponding clinical implications have utility as clinical decision support tools and capabilities for tailoring intervention study designs that promote adherence.
Keywords: Bayesian; Clustering; Cystic fibrosis; Health-care analytics; Health-care delivery; Mixed methods; Personalized medicine; Statistical learning; Theory of reasoned action.