Gaucher disease: Biochemical and molecular findings in 141 patients diagnosed in Greece

Mol Genet Metab Rep. 2020 Jun 7:24:100614. doi: 10.1016/j.ymgmr.2020.100614. eCollection 2020 Sep.

Abstract

Gaucher disease (GD) is characterized by a marked phenotypic and genetic diversity. It is caused by the functional deficiency of the lysosomal enzyme β-glucocerebrosidase (GCase), which in most instances results from mutations in the GBA1 gene and over 500 different disease causing mutations have been described. We present the biochemical and molecular findings in 141 GD cases (14 were siblings) with the three types of the disorder diagnosed in Greece over the last 35 years. 111/141 (78%) GD patients were of Greek origin. The remaining patients were Albanian (24/141; 17%), Syrian (2/141; 1.4%), Egyptian (2/141; 1.4%), Italian (1/141; 0.7%) and Polish (1/141; 0.7%). Mutation analysis identified 28 different mutations and 37 different genotypes. Seven of the mutations were not previously reported (T231I, D283N, N462Y, LI75P, F81L, Y135S and T482K). The most frequent mutations were N370S, D409H;H255Q and L444P. Mutation D409H;H255Q was only identified in Greek and Albanian patients. Sixteen mutations, including the novel ones, were identified only in one allele. Although the N370S mutation was identified only in type 1 patients, not all of type 1 patients carried this mutation. Our results highlight the heterogeneity of Gaucher disease and support the Balkan origin of the double mutant allele D409H;H255Q.

Keywords: GBA; GBA1, Glucocerebrosidase gene; GCase, β-Glucocerebrosidase; GD; GD, Gaucher disease; Gaucher disease; Glucocerebrosidase; Greek; Mutation analysis.