Anti-double-stranded DNA (dsDNA) antibodies induce renal damage in patients with systemic lupus erythematosus by triggering fibrotic processes in kidney cells. However, the precise mechanism underlying penetration of anti-dsDNA immunoglubolin G (IgG) into cells remains unclear. This study was designed to investigate the effect of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible 14 (Fn14) signaling on anti-dsDNA IgG penetration into cells. Mesangial cells were cultured in vitro, and stimulated with TWEAK and anti-dsDNA IgG. The results revealed that TWEAK dose-dependently enhanced cellular internalization of anti-dsDNA IgG and the expression of high-mobility group box 1 (HMGB1). In addition, TWEAK and anti-dsDNA IgG synthetically downregulate suppressor of cytokine signaling 1, and induce the expression of various fibrotic factors. Furthermore, inhibition of HMGB1 attenuates the enhancement effect of TWEAK on anti-dsDNA IgG internalization. The TWEAK upregulation of HMGB1 involves the nuclear factor-κB and phosphatidylinositide 3-kinase/protein kinase B pathways. Therefore, TWEAK/Fn14 signaling contributes to the penetration of anti-dsDNA IgG and relevant fibrotic processes in mesangial cells.
Keywords: Fn14; HMGB1; TWEAK; anti-dsDNA IgG; lupus nephritis.
© 2020 Wiley Periodicals LLC.