Background: Current laboratory examinations for hypercoagulable diseases focus on the biomarker content of the activated coagulation cascade and fibrinolytic system. Direct detection of physiologically important protease activities in blood remains a challenge. This study aims to develop a general approach that enables the determination of activities of crucial coagulation factors and plasmin in blood.
Methods: This assay is based on the proteolytic activation of an engineered zymogen of l-phenylalanine oxidase (proPAO), for which the specific blood protease cleavage sites were engineered between the inhibitory and activity domains of proPAO. Specific cleavage of the recombinant proenzyme leads to the activation of proPAO, followed by oxidation and oxygenation of l-phenylalanine, resulting in an increase of chromogenic production when coupled with the Trinder reaction.
Results: We applied this method to determine the activities of both coagulation factor IIa and plasmin in their physiologically relevant basal state and fully activated state in sodium citrate-anticoagulated plasma respectively. Factor IIa and plasmin activities could be dynamically monitored in patients with thrombotic disease who were taking oral anticoagulants and used for assessing the hypercoagulable state in pregnant women.
Conclusions: The high specificity, sensitivity, and stability of this novel assay not only makes it useful for determining clinically important protease activities in human blood and diagnosing thrombotic diseases but also provides a new way to monitor the effectiveness and safety of anticoagulant drugs.
Keywords: blood protease activity; coagulation factor IIa; plasmin; thrombotic state.
© American Association for Clinical Chemistry 2020. All rights reserved. For permissions, please email: journals.permissions@oup.com.