Most of the current studies on myocardial strain are mainly applied in patients with sinus rhythm because the image quality of arrhythmias obtained with conventional scanning sequences does not meet diagnostic needs. Here, we intend to assess left ventricular (LV) global myocardial strain in patients with arrhythmias with 3 Tesla magnetic resonance (MR) and a new cine sequence. Thirty-three patients with arrhythmia and forty-eight subjects with sinus rhythm were enrolled in the study. LV myocardial thickness, cardiac function, myocardial strain and the apparent contrast-to-noise ratio (CNR) were all measured and compared using images generated by the real-time temporal parallel acquisition technique (TPAT) and the conventional cine sequence. In the arrhythmia group, the image quality of real-time TPAT was significantly better than that of the conventional cine sequence. In the arrhythmia group, the LV global peak radial strain and global peak circumferential strain values of real-time TPAT were significantly different from those of the conventional technique (radial strain, conventional: 20.27 ± 15.39 vs. TPAT: 24.14 ± 15.85, p = 0.007; circumferential strain, conventional:-12.06 ± 6.60 vs. TPAT: -13.71 ± 6.31, p = 0.015). There was no significant difference in global peak longitudinal strain between real-time TPAT and the conventional technique (-10.94 ± 4.66 vs. -10.70 ± 5.96, p = 0.771). There was no significant difference in the cardiac function parameters between the two techniques (p > 0.05), but there was a significant difference in 12 segments of the LV wall thickness between the two sequences (p < 0.05). In the sinus rhythm group, image quality using real-time TPAT was comparable to that using the conventional technique, and there was no significant difference in any of the indices (p > 0.05). Real-time TPAT is an effective method for detection of left ventricular myocardial deformation in patients with arrhythmia.