Concordance between Thioacetamide-Induced Liver Injury in Rat and Human In Vitro Gene Expression Data

Int J Mol Sci. 2020 Jun 4;21(11):4017. doi: 10.3390/ijms21114017.

Abstract

The immense resources required and the ethical concerns for animal-based toxicological studies have driven the development of in vitro and in silico approaches. Recently, we validated our approach in which the expression of a set of genes is uniquely associated with an organ-injury phenotype (injury module), by using thioacetamide, a known liver toxicant. Here, we sought to explore whether RNA-seq data obtained from human cells (in vitro) treated with thioacetamide-S-oxide (a toxic intermediate metabolite) would correlate across species with the injury responses found in rat cells (in vitro) after exposure to this metabolite as well as in rats exposed to thioacetamide (in vivo). We treated two human cell types with thioacetamide-S-oxide (primary hepatocytes with 0 (vehicle), 0.125 (low dose), or 0.25 (high dose) mM, and renal tubular epithelial cells with 0 (vehicle), 0.25 (low dose), or 1.00 (high dose) mM) and collected RNA-seq data 9 or 24 h after treatment. We found that the liver-injury modules significantly altered in human hepatocytes 24 h after high-dose treatment involved cellular infiltration and bile duct proliferation, which are linked to fibrosis. For high-dose treatments, our modular approach predicted the rat in vivo and in vitro results from human in vitro RNA-seq data with Pearson correlation coefficients of 0.60 and 0.63, respectively, which was not observed for individual genes or KEGG pathways.

Keywords: RNA-seq; fibrosis; in vitro–in vivo correlations; interspecies correlation; predictive toxicology; thioacetamide; toxicogenomics.

MeSH terms

  • Animals
  • Biomarkers
  • Cells, Cultured
  • Chemical and Drug Induced Liver Injury, Chronic / etiology*
  • Chemical and Drug Induced Liver Injury, Chronic / metabolism*
  • Chemical and Drug Induced Liver Injury, Chronic / pathology
  • Computational Biology
  • Gene Expression Profiling
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism
  • Humans
  • Organ Specificity / drug effects
  • Rats
  • Thioacetamide / administration & dosage
  • Thioacetamide / adverse effects*
  • Transcriptome

Substances

  • Biomarkers
  • Thioacetamide