Aim: Increasing the occurrence of non-albicans Candida species with intrinsic or acquired resistance to antifungals as well as the emergence of multidrug Candida species coupled with the limited antifungal agents challenges the treatment of candidiasis. Consequently, a class of secondary metabolites of plants exhibiting decent antifungal activity. Therefore, this study aimed to evaluate the antifungal potential of various monoterpenes including Carvone, Limonene, Pinene, Menthone, Menthol, Camphor, Thujone, Citronellol, and Piperitone against standard and clinical isolates of Candida.
Methods and results: Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of compounds were determined, using the broth Microdilution method based on M27-A3 protocol documented by clinical laboratory standard institute (CLSI). Amongst the tested monoterpenes, oxygenated terpenoids showed strong antifungal activity. Specifically, alcoholic terpenoids such as (±)-Citronellol possess more efficacy than the corresponding ketonic ones with MICs ranging from 0·03 to 2·00 μl ml-1 (0·16-10·80 mmol l-1 ). Among the examined yeasts, Candida tropicalis was the most susceptible species to (±)-Citronellol. Moreover, the examined monoterpenes successfully inhibited the growth of fluconazole-resistant Candida species. Moreover, statistical analysis showed no statistically significant difference between the (+) and (-) isomers, except for (±)-α-Pienene and (±) Menthone (ρ-value < 0·05).
Conclusion: Among the tested monoterpenes, (±)-Citronellol was the most potent compounds followed by (+)-α-Pinene and Menthol. Considering the significant antifungal activity of the examined monoterpenes, they could be used in controlling or treating candidiasis. Those potent antifungal monoterpenes with GRAS status in addition to their pleasant taste and odour make them appropriate additive or preservative compounds in food and cosmetics products. Furthermore, these data might help researchers to predict EOs antifungal activities, after determining its constituents.
Significance and impact of the study: This study provides new information about the antifungal activities of monoterpenes and their isomers presented widely in essential oils. Screening results against pathogenic yeasts confirm the correlation between the chemical structure of tested monoterpenes and their antifungal effects. The present findings might be helpful to anticipate the antifungal activity of essential oils.
Keywords: Broth microdilution; Menthone; Yeast; minimum inhibitory concentration; natural product; α-Pienene.
© 2020 The Society for Applied Microbiology.