Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry

J Virol. 2020 Jul 30;94(16):e01002-20. doi: 10.1128/JVI.01002-20. Print 2020 Jul 30.

Abstract

Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG). Using an inducible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we demonstrated that depletion of HOPS subunits as well as UVRAG impairs entry by all pathogenic filoviruses. UVRAG depletion resulted in reduced delivery of EBOV virions to NPC1+ cellular compartments. Furthermore, we show that deletion of a domain on UVRAG known to be required for interaction with the HOPS complex results in impaired EBOV entry. Taken together, our studies demonstrate that EBOV requires both expression of and coordination between the HOPS complex and UVRAG in order to mediate efficient viral entry.IMPORTANCE Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics.

Keywords: Ebola virus; filovirus; vesicular trafficking; virus entry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Carrier Proteins / metabolism
  • Ebolavirus / genetics
  • Ebolavirus / metabolism*
  • Ebolavirus / pathogenicity
  • Endosomes / metabolism
  • Filoviridae / genetics
  • Filoviridae Infections / genetics
  • Filoviridae Infections / metabolism
  • Glycoproteins / metabolism
  • Hemorrhagic Fever, Ebola / metabolism
  • Host-Pathogen Interactions
  • Membrane Glycoproteins / metabolism
  • Niemann-Pick C1 Protein / metabolism*
  • Protein Transport / genetics
  • Protein Transport / physiology
  • Receptors, Virus / metabolism
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism*
  • Viral Envelope Proteins / genetics
  • Virus Internalization / drug effects

Substances

  • Carrier Proteins
  • Glycoproteins
  • Membrane Glycoproteins
  • Niemann-Pick C1 Protein
  • Receptors, Virus
  • Tumor Suppressor Proteins
  • UVRAG protein, human
  • Viral Envelope Proteins