Purpose: Quantified computed tomography (qCT) is known for correlations with airflow obstruction and fibrotic changes of the lung. However, as qCT studies often focus on diseased and elderly subjects, current literature lacks physiological qCT values during body development. We evaluated chest CT examinations of a healthy cohort, reaching from infancy to adulthood, to determine physiological qCT values and changes during body development.
Method: Dose-optimized chest CT examinations performed over the last 3 years using a dual-source CT were retrospectively analysed. Exclusion criteria were age >30 years and any known or newly diagnosed lung pathology. Lung volume, mean lung density, full-width-at-half-maximum and low attenuated volume (LAV) were semi-automated quantified in 151 patients. qCT values between different age groups as well as unenhanced (Group 1) and contrast-enhanced (Group 2) protocols were compared. Models for projection of age-dependant changes in qCT values were fitted.
Results: Significant differences in qCT parameters were found between the age groups from 0 to 15 years (p < 0.05). All parameters except LAV merge into a plateau level above this age as shown by polynomial models (r2 between 0.85 and 0.67). In group 2, this plateau phase is shifted back around five years. Except for the volume, significant differences in all qCT values were found between group 1 and 2 (p < 0.01).
Conclusion: qCT parameters underly a specific age-dependant dynamic. Except for LAV, qCT parameters reach a plateau around adolescence. Contrast-enhanced protocols seem to shift this plateau backwards.