Two-Dimensional Supramolecular Ionic Frameworks for Precise Membrane Separation of Small Nanoparticles

ACS Appl Mater Interfaces. 2020 Jul 8;12(27):30761-30769. doi: 10.1021/acsami.0c05947. Epub 2020 Jun 9.

Abstract

Supramolecular frameworks driven by intermolecular interactions represent a new type of porous materials differing from those driven by covalent or coordination bonding. The intermolecular interaction-induced flexible assembly structures display unique advantages in material processing, structure stimuli response, and recycling. In this work, a two-dimensional (2D) supramolecular ionic framework (SIF) was constructed through the initial ionic interaction between the host cation and polyoxometalate polyanion and then the host-guest inclusion of the formed host ionic complex with a four-arm porphyrin guest molecule following a [2+4] type reaction. Several prepared framework monolayers bearing an orthometric grid structure constituted a nanosheet-like assembly with flexibility and exhibited processability, which provided feasibility for the further preparation of separation membranes via a simple suction procedure of their dispersed suspensions in mixed solvents. The nanofiltration based on the uniform square pores under a slightly reduced pressure successfully achieved precise separation of several types of nanoparticles and molecular clusters in wide distribution at a cutting off value as small as 2.2 nm. These results also implied the potential of the present strategy for more separations at a molecular level and very fine nanoscale.

Keywords: filtration; membrane; nanoseparation; self-assembly; supramolecular framework.