Hematopoietic stem cell regulation by the proteostasis network

Curr Opin Hematol. 2020 Jul;27(4):254-263. doi: 10.1097/MOH.0000000000000591.

Abstract

Purpose of review: Protein homeostasis (proteostasis) is maintained by an integrated network of physiological mechanisms and stress response pathways that regulate the content and quality of the proteome. Maintenance of cellular proteostasis is key to ensuring normal development, resistance to environmental stress, coping with infection, and promoting healthy aging and lifespan. Recent studies have revealed that several proteostasis mechanisms can function in a cell-type-specific manner within hematopoietic stem cells (HSCs). Here, we review recent studies demonstrating that the proteostasis network functions uniquely in HSCs to promote their maintenance and regenerative function.

Recent findings: The proteostasis network is regulated differently in HSCs as compared with restricted hematopoietic progenitors. Disruptions in proteostasis are particularly detrimental to HSC maintenance and function. These findings suggest that multiple aspects of cellular physiology are uniquely regulated in HSCs to maintain proteostasis, and that precise control of proteostasis is particularly important to support life-long HSC maintenance and regenerative function.

Summary: The proteostasis network is uniquely configured within HSCs to promote their longevity and hematopoietic function. Future work uncovering cell-type-specific differences in proteostasis network configuration, integration, and function will be essential for understanding how HSCs function during homeostasis, in response to stress, and in disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / metabolism*
  • Hematopoietic Stem Cells / metabolism*
  • Humans
  • Proteome / metabolism*
  • Proteostasis*

Substances

  • Proteome