This study investigates GT-1 (also known as LCB10-0200), a novel-siderophore cephalosporin, inhibited multidrug-resistant (MDR) Gram-negative pathogen, via a Trojan horse strategy exploiting iron-uptake systems. We investigated GT-1 activity and the role of siderophore uptake systems, and the combination of GT-1 and a non-β-lactam β-lactamase inhibitor (BLI) of diazabicyclooctane, GT-055, (also referred to as LCB18-055) against molecularly characterised resistant Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. isolates. GT-1 and GT-1/GT-055 were tested in vitro against comparators among three different characterised panel strain sets. Bacterial resistome and siderophore uptake systems were characterised to elucidate the genetic basis for GT-1 minimum inhibitory concentrations (MICs). GT-1 exhibited in vitro activity (≤2 μg/mL MICs) against many MDR isolates, including extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing E. coli and K. pneumoniae and oxacillinase (OXA)-producing Acinetobacter spp. GT-1 also inhibited strains with mutated siderophore transporters and porins. Although BLI GT-055 exhibited intrinsic activity (MIC 2-8 μg/mL) against most E. coli and K. pneumoniae isolates, GT-055 enhanced the activity of GT-1 against many GT-1-resistant strains. Compared with CAZ-AVI, GT-1/GT-055 exhibited lower MICs against E. coli and K. pneumoniae isolates. GT-1 demonstrated potent in vitro activity against clinical panel strains of E. coli, K. pneumoniae and Acinetobacter spp. GT-055 enhanced the in vitro activity of GT-1 against many GT-1-resistant strains.
Keywords: GT-055; GT-1; siderophore-cephalosporin; β-lactamase inhibitor.