The production of hydrogen via water electrolysis is feasible only if effective and stable catalysts for the oxygen evolution reaction (OER) are available. Intermetallic compounds with well-defined crystal and electronic structures as well as particular chemical bonding features are suggested here to act as precursors for new composite materials with attractive catalytic properties. Al2 Pt combines a characteristic inorganic crystal structure (anti-fluorite type) and a strongly polar chemical bonding with the advantage of elemental platinum in terms of stability against dissolution under OER conditions. We describe here the unforeseen performance of a surface nanocomposite architecture resulting from the self-organized transformation of the bulk intermetallic precursor Al2 Pt in OER.
Keywords: electrocatalysis; intermetallic phases; water splitting.
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.