Organic solar cells (OSCs) have again become a hot research topic in recent years. The record power conversion efficiency (PCE) of OSCs has boosted to over 17% in 2020. Apart from the high PCE, the stability of OSCs is also critical for their future applications and commercialization. Recently, many studies have proposed that burn-in degradation can be considered as an ineluctable barrier to long-term stable OSCs. However, there is still lack of studies to explain the detailed mechanism of this burn-in process. In this work, we first investigated the mechanism of the burn-in process in the high-efficiency PM6:N3-based nonfullerene OSCs. The PM6:N3-based device achieved a profound average PCE of 14.10% but also showed a significant performance loss after the burn-in degradation. Following characterizations such as dark J-V, photoluminescence (PL), time-resolved PL, Urbach energy estimation, and electrochemical impedance spectroscopy reveal that the burn-in degradation observed is closely related to the current extraction, energy transfer, nonradiative recombination, and charge transport process in the PM6:N3-based device. At the same time, it has small effects on the exciton dissociation process and energetic disorder in the PM6:N3-based device. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and grazing incidence X-ray diffraction measurements gratifyingly found that the morphology of the PM6:N3 active layer is relatively stable during the burn-in degradation. Therefore, these observed degradations are suspected results from the instability of interfaces and electrodes. The atoms in carrier transport layers and electrodes may diffuse to the active layer during the degradation, which changes the energy levels of each layer and causes traps at the interface and in the active layer. Conquering the instability of interfaces and electrodes is proposed as the prior task for PM6:N3-based OSCs to achieve long-term stability. Our study provides insights into the mechanism behind the burn-in degradation of the PM6:N3-based OSCs, which takes the first step to conquer this barrier.
Keywords: and organic solar cells; burn-in degradation; nonfullerene; power conversion efficiency; small molecular acceptor; stability.