Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors

Retrovirology. 2020 May 19;17(1):13. doi: 10.1186/s12977-020-00520-6.

Abstract

Background: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts.

Results: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively.

Conclusions: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.

Keywords: Alchemical binding free energy change calculation; Distant site mutations; HIV-1 protease inhibitors; Hydrogen bond network perturbation; Resistance-associated mutations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Catalytic Domain
  • Drug Resistance, Viral / genetics*
  • HIV Protease / metabolism*
  • HIV Protease Inhibitors / pharmacology*
  • HIV-1 / drug effects*
  • HIV-1 / genetics*
  • Humans
  • Hydrogen Bonding
  • Inhibitory Concentration 50
  • Molecular Dynamics Simulation
  • Mutation*

Substances

  • HIV Protease Inhibitors
  • HIV Protease
  • p16 protease, Human immunodeficiency virus 1