Vascular calcification is a highly regulated process similar to osteogenesis involving phenotypic change of vascular smooth muscle cells (VSMCs). 25-Hydroxycholesterol (25-HC), one of oxysterols synthesized by the enzyme cholesterol 25-hydroxylase, has been shown to promote bovine calcifying vascular cells (CVC) calcification. However, whether and how 25-HC regulates vascular calcification are not completely understood. In this study, in vitro and ex vivo models of vascular calcification were used to determine whether 25-HC regulates vascular calcification. Alizarin red staining and calcium content assay showed that 25-HC treatment promoted calcification of rat and human VSMCs in a dose-dependent manner. Similarly, ex vivo study further confirmed that 25-HC accelerated calcification of rat aortic rings. In addition, western blot analysis showed that 25-HC significantly up-regulated the expression of endoplasmic reticulum stress (ERS) signaling molecules including ATF4 and CHOP in VSMCs and flow cytometry analysis revealed that 25-HC increased apoptosis of VSMCs. Moreover, knockdown of CHOP by siRNA blocked 25-HC-induced mineral deposition in VSMCs. Collectively, this study for the first time demonstrates that 25-HC promotes vascular calcification via ATF4/CHOP signaling using in vitro and ex vivo models, suggesting that ERS is involved in the regulation of 25-HC-induced vascular calcification.
Keywords: 25-Hydroxycholesterol; Apoptosis; CHOP; Endoplasmic reticulum stress; Vascular calcification; Vascular smooth muscle cells.
Copyright © 2020 Elsevier B.V. All rights reserved.