The extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored. Here, we collected wild house mice from three latitudinal transects across North and South America and investigated the relationship between variation in the gut microbiota and host body mass by combining field observations and common garden experiments. First, we found that mice in the Americas follow Bergmann's rule, with increasing body mass at higher latitudes. Second, we found that overall differences in the gut microbiota were associated with variation in body mass controlling for the effects of latitude. Then, we identified specific microbial measurements that show repeated associations with body mass in both wild-caught and laboratory-reared mice. Finally, we found that mice from colder environments tend to produce greater amounts of bacteria-driven energy sources (i.e., short-chain fatty acids) without an increase in food consumption. Our findings provide motivation for future faecal transplant experiments directly testing the intriguing possibility that the gut microbiota may contribute to Bergmann's rule, a fundamental pattern in ecology.
Keywords: Mus musculus; adaptation; body size; coevolution; latitude; microbiome.
© 2020 John Wiley & Sons Ltd.