Objective: Incomplete and static reaction picklists in the allergy module led to free-text and missing entries that inhibit the clinical decision support intended to prevent adverse drug reactions. We developed a novel, data-driven, "dynamic" reaction picklist to improve allergy documentation in the electronic health record (EHR).
Materials and methods: We split 3 decades of allergy entries in the EHR of a large Massachusetts healthcare system into development and validation datasets. We consolidated duplicate allergens and those with the same ingredients or allergen groups. We created a reaction value set via expert review of a previously developed value set and then applied natural language processing to reconcile reactions from structured and free-text entries. Three association rule-mining measures were used to develop a comprehensive reaction picklist dynamically ranked by allergen. The dynamic picklist was assessed using recall at top k suggested reactions, comparing performance to the static picklist.
Results: The modified reaction value set contained 490 reaction concepts. Among 4 234 327 allergy entries collected, 7463 unique consolidated allergens and 469 unique reactions were identified. Of the 3 dynamic reaction picklists developed, the 1 with the optimal ranking achieved recalls of 0.632, 0.763, and 0.822 at the top 5, 10, and 15, respectively, significantly outperforming the static reaction picklist ranked by reaction frequency.
Conclusion: The dynamic reaction picklist developed using EHR data and a statistical measure was superior to the static picklist and suggested proper reactions for allergy documentation. Further studies might evaluate the usability and impact on allergy documentation in the EHR.
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.