Osteogenesis imperfecta (OI) is an inherited heterogeneous rare skeletal disorder characterized by increased bone fragility and low bone mass. The disorder mostly segregates in an autosomal dominant manner. However, several rare autosomal recessive and X-linked forms, caused by mutations in 18 different genes, have also been described in the literature. Here, we present five consanguineous families segregating OI in an autosomal recessive pattern. Affected individuals in the five families presented severe forms of skeletal deformities. It included frequent bone fractures with abnormal healing, short stature, facial dysmorphism, osteopenia, joint laxity, and severe scoliosis. In order to search for the causative variants, DNA of at least one affected individual in three families (A-C) were subjected to whole exome sequencing (WES). In two other families (D-E), linkage analysis using highly polymorphic microsatellite markers was followed by Sanger sequencing. Sequence analysis revealed two novels and three previously reported disease-causing variants. The two novel homozygous variants including [c.824G > A; p.(Cys275Tyr)] in the SP7 gene and [c.397C > T, p.(Gln133*)] in the SERPINF1 gene were identified in families A and B, respectively. The three previously reported homozygous variants including [c.497G > A; p.(Arg166His)] in the SPARC gene, (c.359-3C > G; intron 2) and [c.677C > T; p.(Ser226Leu)] in the WNT1 gene were identified in family C, D, and E. In conclusion, our findings provided additional evidence of involvement of homozygous sequence variants in the SP7, SERPINF1, SPARC and WNT1 genes causing severe OI. It also highlights the importance of extensive genetic investigations to search for the culprit gene in each case of skeletal deformity.
Keywords: Linkage analysis; Novel variants; Osteogenesis imperfecta; SERPINF1; SP7; SPARC; Sanger sequencing; WNT1; Whole exome sequencing.
Copyright © 2020 Elsevier Masson SAS. All rights reserved.