Modeling Controlled Cortical Impact Injury in 3D Brain-Like Tissue Cultures

Adv Healthc Mater. 2020 Jun;9(12):e2000122. doi: 10.1002/adhm.202000122. Epub 2020 May 13.

Abstract

Traumatic brain injury (TBI) survivors suffer long term from mental illness, neurodegeneration, and neuroinflammation. Studies of 3D tissue models have provided new insights into the pathobiology of many brain diseases. Here, a 3D in vitro contusion model is developed consisting of mouse cortical neurons grown on a silk scaffold embedded in collagen and used outcomes from an in vivo model for benchmarking. Molecular, cellular, and network events are characterized in response to controlled cortical impact (CCI). In this model, CCI induces degradation of neural network structure and function and release of glutamate, which are associated with the expression of programmed necrosis marker phosphorylated Mixed Lineage Kinase Domain Like Pseudokinase (pMLKL). Neurodegeneration is observed first in the directly impacted area and it subsequently spreads over time in 3D space. CCI reduces phosphorylated protein kinase B (pAKT) and Glycogen synthase kinase 3 beta (GSK3β) in neurons in vitro and in vivo, but discordant responses are observed in phosphprylated ribosomal S6 kinase (pS6) and phosphorylated Tau (pTau) expression. In summary, the 3D brain-like culture system mimicked many aspects of in vivo responses to CCI, providing evidence that the model can be used to study the molecular, cellular, and functional sequelae of TBI, opening up new possibilities for discovery of therapeutics.

Keywords: 3D in vitro models; brain tissue; controlled cortical impact; neurodegeneration; tissue engineering; traumatic brain injuries.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Brain
  • Brain Injuries, Traumatic*
  • Disease Models, Animal*
  • Mice
  • Neurons
  • Tissue Culture Techniques