Detection and occurrence of microplastics in the stomach of commercial fish species from a municipal water supply lake in southwestern Nigeria

Environ Sci Pollut Res Int. 2020 Sep;27(25):31035-31045. doi: 10.1007/s11356-020-09031-5. Epub 2020 May 12.

Abstract

Microplastics (MPs) are physical anthropogenic pollutants and their ability to act as contaminant vectors in biological matrices is of serious ecosystem and human health concern. In the present study, we have, for the first time, screened and detected MPs in the stomach of a select group of commonly consumed fish species from a municipal water supply lake (Eleyele) in Nigeria. A total of 109 fish samples consisting of eight (8) species: Coptodon zillii (CZ: n = 38), Oreochromis niloticus (ON: n = 43), Sarotheron melanotheron (SM: n = 19), Chrysicthys nigrodigitatus (CN: n = 3), Lates niloticus (LN: n = 3), Paranchanna obscura (PO: n = 1), Hemichromis fasiatus (HF: n = 1), and Hepsetus odoe (HO: n = 1) were collected between February-April, 2018. Fish stomach content was screened for the presence of MPs using the density gradient separation technique (NaCl hypersaline solution) and examined using a fluorescence microscope. MPs were present in all the species screened (except H. fasciatus) with a frequency of 69.7% positive individuals in the examined species. MP prevalence was highest in ON (34%) > CZ (32%) > SM (13%) > CN (6%) and 5% each, for PO HO, and LN. On average, 1-6 MPs with sizes ranging between 124 μm and 1.53 mm were detected per individual. However, the highest number (34) of MPs was detected in the stomach of SM. Principal coordinate analysis (PCA) identified ecological variables such as habitat, feeding mode, and trophic levels as critical factors that may determine and influence MP uptake in fish population. The PCA showed stronger association between fish habitat, feeding mode, and trophic level with MP size and number in the benthopelagic species (ON CZ and SM), compared to demersal species (PO CN HO and LN). Given that MPs can act as vectors for the transfer of pathogens and environmental contaminants (both legacy and emerging), in addition to direct health risks to aquatic organisms, our findings raise concerns on the potential human/wildlife health effects of MPs in these economically and ecologically important food fishes.

Keywords: Eleyele Lake; Feeding mode; Microplastics; Trophic level; Tropical ecosystems.

MeSH terms

  • Animals
  • Ecosystem
  • Environmental Monitoring
  • Fishes
  • Humans
  • Lakes*
  • Microplastics
  • Nigeria
  • Plastics
  • Stomach / chemistry
  • Water Pollutants, Chemical / analysis*
  • Water Supply

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical