Poor patient adherence to antiretroviral medication represents a major obstacle for managing disease and reducing rates of new HIV infections. The measurement of patient drug levels is the most objective method of determining adherence. Tenofovir and tenofovir diphosphate are metabolites of some of the most common HIV medications for treatment and prevention and can be quantified by mass spectrometry. Here, we report the development of a competitive enzyme linked immunoassay as a simplified approach for detecting tenofovir and tenofovir diphosphate. Monoclonal antibodies were produced by two tenofovir-hapten conjugates and screened for binding to immobilized tenofovir, and then for competition by tenofovir and tenofovir diphosphate. Antibody specificity was evaluated against adenosine phosphates, which are close structural analogs. We performed numerical simulations of reaction equilibrium to guide assay optimization. When used to evaluate spiked tenofovir in plasma and spiked tenofovir diphosphate in red blood cell lysate, the optimized assay had high sensitivity and specificity.
Keywords: HIV; PrEP; adherence; antiretroviral therapy (ART); immunoassay; tenofovir.