Anabolic androgenic steroids (AAS) are prohibited as performance-enhancing drugs in sports. Among them, testosterone and its precursors are often referred to as "pseudoendogenous" AAS, that is, endogenous steroids that are prohibited when administered exogenously. To detect their misuse, among other methods, the World Anti-Doping Agency-accredited laboratories monitor the steroid profile (concentrations and concentration ratios of endogenous steroids, precursors and metabolites) in urine samples collected from athletes in and out of competition. Alterations in steroid profile markers are used as indicators for misuse of anabolic steroids in sports. Therefore, especially their metabolic pathways with possible interactions are crucial to elucidate. As steroid metabolism is very complex, and many enzymes are involved, certain non-prohibited drugs may influence steroid metabolite excretion. One important group of steroid-metabolizing enzymes is aldo-keto reductases (AKRs). An inhibition of them by non-steroidal anti-inflammatory drugs (NSAIDs), which are neither prohibited nor monitored, but frequently used drugs in sports, was demonstrated in vitro. Thus, this work aims to investigate the influence of NSAID intake on the urinary steroid profile. Kinetic and inhibitory studies were performed using 5α-dihydrotestosterone as substrate. The results obtained from in vitro experiments show that ibuprofen inhibits AKR1C2 and thus influences steroid biotransformation. For in vivo investigations, urine samples prior, during and postadministration of ibuprofen were analyzed using routine methods to monitor the steroid profile. Changes in markers of the steroid profile of volunteers were observed. The combination of in vitro and in vivo results suggests that monitoring of ibuprofen may be useful in doping control analysis. The presented work illustrates the importance to consider co-administration of (non-prohibited) drugs during antidoping analysis. Intake of multiple substances is likely leading to interfering effects. Divergent results in antidoping analysis may therefore be observed and misinterpretation of analytical data may occur. Similar considerations may be appropriate for other fields of forensic applications.
© The Author(s) 2020. Published by Oxford University Press on behalf of The International Association of Forensic Toxicologists, Inc. All rights reserved. For permissions, please email: journals.permissions@oup.com.