Purpose: A highly accurate and robust computer-aided system based on quantitative high-throughput Breast Imaging Reporting and Data System (BI-RADS) features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can drive the success of radiomic applications in breast cancer diagnosis. We aim to build a stable system with highly reproducible radiomics features, which can make diagnostic performance independent of datasets bias and segmentation methods.
Method: We applied a dataset of 267 patients including 136 malignant and 131 benign tumors from two MRI manufacturers, where 211 cases from a Philips system and 55 cases from a GE system. First, manual annotations, 3D-Unet and 2D-Unet were applied as different segmentation methods. Second, we designed and extracted 3172 features from six modalities of DCE-MRI based on BI-RADS. Third, the feature selection was conducted. Between-class distance was utilized to eliminate the effect of dataset bias caused by two machines. Concordance correlation coefficient, intraclass correlation coefficient and deviation were employed to evaluate the influence of three segmentation methods. We further eliminated features redundancy using genetic algorithm. Finally, three classifiers including support vector machine (SVM), the bagged trees and K-Nearest Neighbor were evaluated by their performance for diagnosing malignant and benign tumors.
Results: A total of 246 features were preserved to have high stability and reproducibility. The final feature set showed the robust performance under these factors and achieved the area under curve of 0.88, the accuracy of 0.824, the sensitivity of 0.844, the specificity of 0.807 in differentiating benign and malignant tumors with the SVM classifier using manually segmentation results.
Conclusion: The final selected 246 features are reproducible and show little dependence on segmentation methods and data perturbation. The high stability and effectiveness of diagnosis across these factors illustrate that the preserved features can be used for prognostic analysis and help radiologists in the diagnosis of breast cancer.
Keywords: Breast tumor; DCE-MRI; Feature reproducibility; Radiomics.