Following olfactory classical conditioning, infant rats exhibit a preference for the conditioned odor and exhibit enhanced uptake of focal 14C 2-deoxyglucose (2-DG) within the olfactory bulb. The present experiments assessed the role of respiration on the expression of the enhanced 2-DG uptake response. Pups were conditioned from postnatal day (PN) 1-18 with an olfactory stimulus paired with a reinforcing tactile stimulus which mimics maternal contact (Odor-Stroke). Control pups received odor only or tactile stimulation only. On PN 19, pups received 1 of 3 tests: 1) a two-odor choice test, 2) an odor/2-DG test with normal respiration allowed, or 3) an odor/2-DG test with respiration experimentally controlled. The results indicated that: 1) Odor-Stroke pups learned the conditioned odor preference, 2) Odor-Stroke, normally respiring pups exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups. No difference in respiration rate was detected between groups in normally respiring pups. 3) Odor Stroke pups whose breathing was experimentally controlled exhibited enhanced olfactory bulb 2-DG uptake when compared to control pups with an identical number of respirations. Together, these results demonstrate that modified respiration during testing is not required for the expression of a modified olfactory bulb response to learned attractive odors. Therefore, the data suggest that the olfactory system itself is modified by early learning.