Milk proteins have been hypothesized to protect against type 2 diabetes (T2DM) by beneficially modulating glycemic response, predominantly in the postprandial status. This potential is, amongst others, attributed to the high content of whey proteins, which are commonly a product of cheese production. However, native whey has received substantial attention due to its higher leucine content, and its postprandial glycemic effect has not been assessed thus far in prediabetes. In the present study, the impact of a milk protein hydrolysate of native whey origin with alpha-glucosidase inhibiting properties was determined in prediabetics in a randomized, cross-over trial. Subjects received a single dose of placebo or low- or high-dosed milk protein hydrolysate prior to a challenge meal high in carbohydrates. Concentration-time curves of glucose and insulin were assessed. Incremental areas under the curve (iAUC) of glucose as the primary outcome were significantly reduced by low-dosed milk peptides compared to placebo (p = 0.0472), and a minor insulinotropic effect was seen. A longer intervention period with the low-dosed product did not strengthen glucose response but significantly reduced HbA1c values (p = 0.0244). In conclusion, the current milk protein hydrolysate of native whey origin has the potential to modulate postprandial hyperglycemia and hence may contribute in reducing the future risk of developing T2DM.
Keywords: alpha-glucosidase inhibitor; biopeptides; blood glucose; glycemic control; hyperglycemia; milk peptides; postprandial; pre-meal; prediabetes; type 2 diabetes.