Background: Lung transplantation is a complex but effective treatment of end-stage pulmonary disease. Among the post-operative complications, phrenic nerve injury, and consequent diaphragmatic dysfunction are known to occur but are hitherto poorly described. We aimed to investigate the effect of lung transplantation on diaphragmatic function with a multimodal approach.
Methods: A total of 30 patients were studied at 4 time points: pre-operatively, at discharge after surgery, and after approximately 6 and subsequently 12 months post surgery. The diaphragmatic function was studied in terms of geometry (assessed by the radius of the diaphragmatic curvature delineated on chest X-ray), weakness (considering changes in forced vital capacity when the patient shifted from upright to supine position), force (maximal pressure during sniff), mobility (excursion of the dome of the diaphragm delineated by ultrasound), contractility (thickening fraction assessed by ultrasound), electrical activity (latency and area of compound muscle action potential during electrical stimulation of phrenic nerve), and kinematics (relative contribution of the abdominal compartment to tidal volume).
Results: Despite good clinical recovery (indicated by spirometry and 6 minutes walking test), a reduction of the diaphragmatic function was detected at discharge; it persisted 6 months later to recover fully 1 year after transplantation. Diaphragmatic dysfunction was demonstrated in terms of force, weakness, electrical activity, and kinematics. Our data suggest that the dysfunction was caused by phrenic nerve neurapraxia or moderate axonotmesis, potentially as a consequence of the surgical procedure (i.e., the use of ice and pericardium manipulation).
Conclusions: The occurrence of diaphragmatic dysfunction in patients with a good clinical recovery indicates that the evaluation of diaphragmatic function should be included in the post-operative assessment after lung transplantation.
Keywords: diaphragm; lung transplantation; opto-electronic plethysmography; phrenic nerve; ultrasound.
Copyright © 2020 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.