Covalent organic frameworks (COFs) consist nanochannels that are fundamentally important for their application. Up to now, the effect of gas phase on COF nanochannels are hard to explore. Here, TAPB-PDA-COFs (triphenylbenzene-terephthaldehyde-COFs) was synthesized in situ at the tip of a theta micropipette. The COF-covered theta micropipette (CTP) create a stable gas-liquid interface inside the COF nanochannels, through which the humidity-modulated ion mass transfer in the COF nanochannels can be recorded by recording the current across the two channels of the theta micropipette. Results show that the humid air changes the mobility of the ions inside the COF nanochannels, which leads to the change of ionic current. Humid air showed different effects on the ion transfer depending on the solvent polarity index and vapor pressure. Current decreases linearly with the increase of relative humidity (RH) from 11% to 98%. The CTP was also mounted on the scanning electrochemical microscopy as a probe electrode for mapping micrometer-scale humidity distribution.