Objective: The objective of this study was to determine the shape of cochlear basal turn through basic cochlear parameters measurement. The secondary aim was to overlay an image of the precurved electrode array on top of the three-dimensional (3D) image of the cochlea to determine which shape of the cochlear basal turn gives optimal electrode-to-modiolus proximity.
Materials and methods: Computed tomography (CT) preoperative image-data sets of 117 ears were made available for the measurements of cochlear parameters retrospectively. Three-dimensional slicer was used in the visualization and measurement of cochlear parameters from both 3D and 2D (2-dimensional) images of the inner ear. Cochlear parameters including basal turn diameter (A), width of the basal turn (B), and cochlear height (H) were measured from the appropriate planes. B/A ratio was made to investigate which ratios correspond to round and elliptical shape of the cochlear basal turn.
Results: The cochlear size as measured by A value ranged between 7.4 mm and 10 mm. The B value and the cochlear height (H) showed a weak positive linear relation with A value. The ratio between the B and A values anything above or below 0.75 could be an indicator for a more round- or elliptical shaped cochlear basal turn, respectively. One sized/shaped commercially available precurved electrode array would not offer a tight electrode-to-modiolus in the cochlea that has an elliptical shaped basal turn as identified by the B/A ratio of <0.75.
Conclusion: Accurate measurement of cochlear parameters adds value to the overall understanding of the cochlear geometry before a cochlear implantation procedure. The shape of cochlear basal turn could have clinical implications when comes to electrode-to-modiolus proximity.
Keywords: cochlear parameters; shape of basal turn of the cochlea.