Perfluorooctane sulfonate (PFOS) has been widely used as a surface coating for household products. It still exists in living environments despite being restricted, due to its bioaccumulation and long half-life. Studies have shown that PFOS has the ability to induce adipogenic differentiation of human cells. Human mesenchymal stem cells (hMSCs) distributed within the adipose tissue might be a potential target of accumulated PFOS. However, traditional end-point toxicity assays failed to examine the subtle changes of cellular function exposed to low-dose persistent organic pollutants in real time. In the present work, highly sensitive and long-retained (more than 30 days) fluorescence based polymeric nanosensors were developed and employed for real-time assessment of cellular functions. hMSCs were engineered with sensor molecules encapsulated poly (lactic-co-glycolic acid) (PLGA) particles. Once internalized by hMSCs, PLGA particles continuously release and replenish sensor molecules to cytoplasm, resulting in prolonged fluorescence signal against photo bleaching and dilution by exocytosis. With this method, the dynamic changes of viability, ROS induction, and adipogenic differentiation related mRNA expression of hMSCs were monitored. PFOS with the concentration as low as 0.1 μM can induce cellular ROS and enhance the PPARγ and ap2 mRNA expression, suggesting the effect on promoting adipogenic differentiation of hMSCs.
Keywords: Adipogenic differentiation; Human mesenchymal stem cells; Intracellular nanosensor; Perfluorooctane sulfonate; Real-time function assessment.
Copyright © 2020 Elsevier Ltd. All rights reserved.