Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell's physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing.
Keywords: ascidian; cell fate specification; cell type classification; embryogenesis; gene expression noise; light sheet imaging; lineage reconstruction; single-cell RNA sequencing; spatial reconstruction.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.