IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer

Blood Adv. 2020 Apr 28;4(8):1594-1605. doi: 10.1182/bloodadvances.2019001248.

Abstract

As regulatory T cell (Treg) adoptive therapy continues to develop clinically, there is a need to determine which immunomodulatory agents pair most compatibly with Tregs to enable persistence and stabilize suppressor function. Prior work has shown that mechanistic target of rapamycin inhibition can increase the stability of thymic Tregs. In this study, we investigated the transcriptomic signatures of ex vivo-expanded Tregs after adoptive transfer in the setting of clinically relevant immunosuppression using a nonhuman primate (NHP) model as a prelude to future transplant studies. Here, we found that adding interleukin-2 (IL-2) to rapamycin in vivo supported a logarithmic increase in the half-life of adoptively transferred carboxyfluorescein diacetate succinimidyl ester-labeled, autologous NHP Tregs, effectively doubling the number of cells in the peripheral blood Treg compartment compared with Treg infusion when rapamycin was given alone. Using single-cell transcriptomics, we found that transferred ex vivo-expanded Tregs initially exhibit a gene expression signature consistent with an activated state. Moreover, those cells with the highest levels of activation also expressed genes associated with p53-mediated apoptosis. In contrast, transferred Tregs interrogated at day +20 posttransfer demonstrated a gene signature more similar to published profiles of resting Tregs. Together, these preclinical data further support combining IL-2 and rapamycin in vivo as adjunctive therapy for ex vivo-expanded adoptively transferred Tregs and suggest that the activation status of ex vivo-expanded Tregs is critical to their persistence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adoptive Transfer
  • Animals
  • Interleukin-2 Receptor alpha Subunit
  • Interleukin-2*
  • Sirolimus / pharmacology
  • T-Lymphocytes, Regulatory*

Substances

  • Interleukin-2
  • Interleukin-2 Receptor alpha Subunit
  • Sirolimus