Conformation and dynamics of a self-avoiding active flexible polymer

Phys Rev E. 2020 Mar;101(3-1):030501. doi: 10.1103/PhysRevE.101.030501.

Abstract

We investigate conformations and dynamics of a polymer considering its monomers to be active Brownian particles. This active polymer shows very intriguing physical behavior which is absent in an active Rouse chain. The chain initially shrinks with active force, which starts swelling on further increase in force. The shrinkage followed by swelling is attributed purely to excluded-volume interactions among the monomers. In the swelling regime, the chain shows a crossover from the self-avoiding behavior to the Rouse behavior with scaling exponent ν_{a}≈1/2 for end-to-end distance. The nonmonotonicity in the structure is analyzed through various physical quantities; specifically, radial distribution function of monomers, scattering time, as well as various energy calculations. The chain relaxes faster than the Rouse chain in the intermediate force regime, with a crossover in variation of relaxation time at large active force as given by a power law τ_{r}∼Pe^{-4/3} (Pe is Péclet number).