Discovery and optimization of novel phenyldiazepine and pyridodiazepine based Aurora kinase inhibitors

Bioorg Chem. 2020 Jun:99:103800. doi: 10.1016/j.bioorg.2020.103800. Epub 2020 Mar 29.

Abstract

Aurora B plays critical role in the process of chromosome condensation and chromosome orientation during the regulation of mitosis. The overexpression of Aurora B has been observed in several tumor types. As a part of our ongoing effort to develop Aurora B inhibitors, herein, we described the design, synthesis and evaluation of phenyl/pyridine diazepine analogs. The diazepane aniline pyrimidine (4a) was identified as an initial hit (Aurora B IC50 6.9 µM). Molecular modeling guided SAR optimization lead to the identification of 8-fluorobenzodiazepine (6c) with single digit nM potency (Aurora B IC50 8 nM). In the antiproliferation assay 6c showed activity across the cell lines with IC50 of 0.57, 0.42, and 0.69 µM for MCF-7, MDA-MB 231, and SkoV3 respectively. In the in vivo PK profile. 6c has shown higher bioavailability (73%) along with good exposure (AUC of 1360 ng.h/mL).

Keywords: Aurora kinase inhibitor; Oncology; Phenyldiazepine; Pyridodiazepine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Aurora Kinase B / antagonists & inhibitors*
  • Aurora Kinase B / metabolism
  • Azepines / chemical synthesis
  • Azepines / chemistry
  • Azepines / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Drug Screening Assays, Antitumor
  • Humans
  • Mice
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Azepines
  • Protein Kinase Inhibitors
  • AURKB protein, human
  • Aurora Kinase B