One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage

Nanoscale Horiz. 2016 Jan 18;1(1):27-40. doi: 10.1039/c5nh00023h. Epub 2015 Nov 26.

Abstract

Numerous metal oxides (MOs) have been considered as promising electrode materials for electrochemical energy storage devices, including lithium-ion batteries (LIBs) and electrochemical capacitors (ECs), because of their outstanding features such as high capacity/capacitance, low cost, as well as environmental friendliness. However, one major challenge for MO-based electrodes is the poor cycling stability derived from the large volume variation and intense mechanic strain, which are inevitably generated during repeated charge/discharge processes. Nanostructure engineering has proven to be one of the most effective strategies to improve the electrochemical performance of MO-based electrode materials. Among various nanostructures, one-dimensional (1D) metal oxide-carbon hybrid nanostructures might offer some solution for the challenging issues involved in bulk MO-based electrode materials for energy storage devices. Herein, we give an overview of the rational design, synthesis strategies and electrochemical properties of such 1D MO-carbon structures and highlight some of the latest advances in this niche area. It starts with a brief introduction to the development of nanostructured MO-based electrodes. We will then focus on the advanced synthesis and improved electrochemical performance of 1D MO-carbon nanostructures with different configurations, including MO-carbon composite nanowires, core-shell nanowires and hierarchical nanostructures. Lastly, we give some perspective on the current challenges and possible future research directions in this area.