Citrus bacterial canker (CBC) is a disease resulting from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production worldwide. Wall-associated receptor-like kinases (WAKLs) are proteins with a central role in resisting a range of fungal and bacterial diseases. The roles of WAKLs in the context of CBC resistance, however, remain unclear. Here, we explored the role of CsWAKL08, which confers resistance to CBC, and we additionally analyzed the molecular mechanisms of CsWAKL08-mediated CBC resistance. Based on systematic annotation and induced expression analysis of the CsWAKL family in Citrus sinensis, CsWAKL08 was identified as a candidate that can be upregulated by Xcc infection in the CBC-resistant variety. CsWAKL08 can also be induced by the phytohormones salicylic acid (SA) and methyl jasmonic acid (MeJA) and spans the plasma membrane. Overexpression of CsWAKL08 resulted in strong CBC resistance in transgenic sweet oranges, whereas silencing of CsWAKL08 resulted in susceptibility to CBC. The peroxidase (POD) and superoxide dismutase (SOD) activities were significantly enhanced in the CsWAKL08-overexpressing plants compared to the control plants, thereby mediating reactive oxygen species (ROS) homeostasis in the transgenic plants. Moreover, the JA levels and the expression of JA biosynthesis and JA responsive genes were substantially elevated in the CsWAKL08 overexpression plants relative to the controls upon Xcc infection. Based on these findings, we conclude that the wall-associated receptor-like kinase CsWAKL08 positively regulates CBC resistance through a mechanism involving ROS control and JA signaling. These results further highlight the importance of this kinase family in plant pathogen resistance.
Keywords: Plant physiology; Plant stress responses.
© The Author(s) 2020.