Objective: Lumbar fusion with implantation of interbody cage is a common procedure for treatment of lumbar degenerative disease. This study aims to compare the fusion and subsidence rates of titanium (Ti) versus polyetheretherketone (PEEK) interbody cages after posterior lumbar interbody fusion and investigate the effect of clinical and radiological outcomes following fusion on patient-reported outcomes.
Methods: A systematic search strategy of 4 electronic databases (MEDLINE, Embase, Web of Science, and Cochrane) was conducted using different MeSH (medical subject headings) terms until January 2020. Pooled odds ratios (ORs) with 95% confidence intervals (CI) were calculated using fixed and random-effect models based upon the heterogeneity (I2) to estimate the association between interbody cages and the measured outcomes.
Results: A total of 1,094 patients from 11 studies were reviewed. The final analysis included 421 patients (38.5%) who had lumbar surgery using a Ti and/or a Ti-coated interbody cage and 673 patient (61.5%) who had lumbar surgery using a PEEK cage. Overall, PEEK interbody devices were associated with a significantly lower fusion rate compared with Ti interbody devices (OR, 0.62; 95% CI, 0.41-0.93; p = 0.02). There was no difference in subsidence rates between Ti and PEEK groups (OR, 0.91; 95% CI, 0.54-1.52; p = 0.71). Also, there were no statistically significant differences in visual analogue scale (VAS)-low back pain (p = 0.14) and Japanese Orthopedic Association scale (p = 0.86) between the 2 groups. However, the PEEK group had lower odds of leg pain after surgery compared to the Ti group (OR [VAS-leg], 0.61; 95% CI, 0.28-0.94; p = 0.003).
Conclusion: Ti and Ti-coated PEEK cages used for posterior lumbar interbody fusion are associated with similar rates of subsidence, but a higher rate of fusion compared to PEEK interbody cages. Randomized controlled trials are needed to better assess the effect of cage materials and potential factors that could influence the outcomes of interbody lumbar fusion.
Keywords: Interbody cage; Lumbar spine; Polyetheretherketone; Spinal fusion; Titanium.