The cytotoxicity of epitope-specific CD8+ T cells is usually measured indirectly through IFNγ production. Existing assays that directly measure this activity are limited mainly to measurements of up to two specificities in a single reaction. Here, we develop a multiplex cytotoxicity assay that allows direct, simultaneous measurement of up to 23 different specificities of CD8+ T cells in a single reaction. This can greatly reduce the amount of starting clinical materials for a systematic screening of CD8+ T cell epitopes. In addition, this greatly enhanced capacity enables the incorporation of irrelevant epitopes for determining the non-specific killing activity of CD8+ T cells, thereby allowing to measure the actual epitope-specific cytotoxicity activities. This technique is shown to be useful to study both human and mouse CD8+ T cells. Besides, our results from human PBMCs and three independent infectious animal models (MERS, influenza and malaria) further reveal that IFNγ expression by epitope-specific CD8+ T cells does not always correlate with their cell-killing potential, highlighting the need for using cytotoxicity assays in specific contexts (e.g., evaluating vaccine candidates). Overall, our approach opens up new possibilities for comprehensive analyses of CD8+ T cell cytotoxicity in a practical manner.
Keywords: CD8 T cell; MERS; Plasmodium; cytotoxicity; influenza; multiplex assay.
Copyright © 2020 Poh, Zheng, Channappanavar, Chang, Nguyen, Rénia, Kedzierska, Perlman and Poon.