The enantioselective separation of newly prepared, pharmacologically significant isopulegol-based ß-amino lactones and ß-amino amides has been studied by carrying out high-performance liquid chromatography on diverse amylose and cellulose tris-(phenylcarbamate)-based chiral stationary phases (CSPs) in n-hexane/alcohol/diethylamine or n-heptane/alcohol/ diethylamine mobile phase systems. For the elucidation of mechanistic details of the chiral recognition, seven polysaccharide-based CSPs were employed under normal-phase conditions. The effect of the nature of selector backbone (amylose or cellulose) and the position of substituents of the tris-(phenylcarbamate) moiety was evaluated. Due to the complex structure and solvation state of polysaccharide-based selectors and the resulting enantioselective interaction sites, the chromatographic conditions (e.g., the nature and content of alcohol modifier) were found to exert a strong influence on the chiral recognition process, resulting in a particular elution order of the resolved enantiomers. Since no prediction can be made for the observed enantiomeric resolution, special attention has been paid to the identification of the elution sequences. The comparison between the effectiveness of covalently immobilized and coated polysaccharide phases allows the conclusion that, in several cases, the application of coated phases can be more advantageous. However, in general, the immobilized phases may be preferred due to their increased robustness. Thermodynamic parameters derived from the temperature-dependence of the selectivity revealed enthalpically-driven separations in most cases, but unusual temperature behavior was also observed.
Keywords: Enantioselective separation; HPLC; Isopulegol analogs; Polysaccharide-based chiral stationary phases.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.