AMPK activation induces mitophagy and promotes mitochondrial fission while activating TBK1 in a PINK1-Parkin independent manner

FASEB J. 2020 May;34(5):6284-6301. doi: 10.1096/fj.201903051R. Epub 2020 Mar 22.

Abstract

Mitophagy is a key process regulating mitochondrial quality control. Several mechanisms have been proposed to regulate mitophagy, but these have mostly been studied using stably expressed non-native proteins in immortalized cell lines. In skeletal muscle, mitophagy and its molecular mechanisms require more thorough investigation. To measure mitophagy directly, we generated a stable skeletal muscle C2C12 cell line, expressing a mitophagy reporter construct (mCherry-green fluorescence protein-mtFIS1101-152 ). Here, we report that both carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment and adenosine monophosphate activated protein kinase (AMPK) activation by 991 promote mitochondrial fission via phosphorylation of MFF and induce mitophagy by ~20%. Upon CCCP treatment, but not 991, ubiquitin phosphorylation, a read-out of PTEN-induced kinase 1 (PINK1) activity, and Parkin E3 ligase activity toward CDGSH iron sulfur domain 1 (CISD1) were increased. Although the PINK1-Parkin signaling pathway is active in response to CCCP treatment, we observed no change in markers of mitochondrial protein content. Interestingly, our data shows that TANK-binding kinase 1 (TBK1) phosphorylation is increased after both CCCP and 991 treatments, suggesting TBK1 activation to be independent of both PINK1 and Parkin. Finally, we confirmed in non-muscle cell lines that TBK1 phosphorylation occurs in the absence of PINK1 and is regulated by AMPK-dependent signaling. Thus, AMPK activation promotes mitophagy by enhancing mitochondrial fission (via MFF phosphorylation) and autophagosomal engulfment (via TBK1 activation) in a PINK1-Parkin independent manner.

Keywords: endogenous; mitophagy; skeletal muscle; tandem ubiquitin-binding entity (TUBE); ubiquitin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism*
  • Animals
  • Carbonyl Cyanide m-Chlorophenyl Hydrazone / pharmacology
  • Enzyme Activation
  • HeLa Cells
  • Humans
  • Mice
  • Mitochondrial Dynamics*
  • Mitophagy*
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / pathology*
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proton Ionophores / pharmacology
  • Signal Transduction
  • Ubiquitin / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*
  • Ubiquitination

Substances

  • Proton Ionophores
  • Ubiquitin
  • Carbonyl Cyanide m-Chlorophenyl Hydrazone
  • Ubiquitin-Protein Ligases
  • parkin protein
  • Protein Kinases
  • PTEN-induced putative kinase
  • Protein Serine-Threonine Kinases
  • TBK1 protein, human
  • AMP-Activated Protein Kinases