Background and aims: Afromontane forests host a unique biodiversity distributed in isolated high-elevation habitats within a matrix of rain forests or savannahs, yet they share a remarkable flora that raises questions about past connectivity between currently isolated forests. Here, we focused on the Podocarpus latifolius-P. milanjianus complex (Podocarpaceae), the most widely distributed conifers throughout sub-Saharan African highlands, to infer its demographic history from genetic data.
Methods: We sequenced the whole plastid genome, mitochondrial DNA regions and nuclear ribosomal DNA of 88 samples from Cameroon to Angola in western Central Africa and from Kenya to the Cape region in eastern and southern Africa to reconstruct time-calibrated phylogenies and perform demographic inferences.
Key results: We show that P. latifolius and P. milanjianus form a single species, whose lineages diverged during the Pleistocene, mostly between approx, 200 000 and 300 000 years BP, after which they underwent a wide range expansion leading to their current distributions. Confronting phylogenomic and palaeoecological data, we argue that the species originated in East Africa and reached the highlands of the Atlantic side of Africa through two probable latitudinal migration corridors: a northern one towards the Cameroon volcanic line, and a southern one towards Angola. Although the species is now rare in large parts of its range, no demographic decline was detected, probably because it occurred too recently to have left a genetic signature in our DNA sequences.
Conclusions: Despite the ancient and highly fluctuating history of podocarps in Africa revealed by palaeobotanical records, the extended distribution of current P. latifolius/milanjianus lineages is shown to result from a more recent history, mostly during the mid-late Pleistocene, when Afromontane forests were once far more widespread and continuous.
Keywords: Podocarpus latifolius; Podocarpus milanjianus; Afromontane forest; Podocarpaceae; genome skimming; molecular dating; palaeoecology; phylogenomics; phylogeography; plastome sequencing.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.