Reducing False-Positive Results in Newborn Screening Using Machine Learning

Int J Neonatal Screen. 2020 Mar;6(1):16. doi: 10.3390/ijns6010016. Epub 2020 Mar 3.

Abstract

Newborn screening (NBS) for inborn metabolic disorders is a highly successful public health program that by design is accompanied by false-positive results. Here we trained a Random Forest machine learning classifier on screening data to improve prediction of true and false positives. Data included 39 metabolic analytes detected by tandem mass spectrometry and clinical variables such as gestational age and birth weight. Analytical performance was evaluated for a cohort of 2777 screen positives reported by the California NBS program, which consisted of 235 confirmed cases and 2542 false positives for one of four disorders: glutaric acidemia type 1 (GA-1), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency (OTCD), and very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). Without changing the sensitivity to detect these disorders in screening, Random Forest-based analysis of all metabolites reduced the number of false positives for GA-1 by 89%, for MMA by 45%, for OTCD by 98%, and for VLCADD by 2%. All primary disease markers and previously reported analytes such as methionine for MMA and OTCD were among the top-ranked analytes. Random Forest's ability to classify GA-1 false positives was found similar to results obtained using Clinical Laboratory Integrated Reports (CLIR). We developed an online Random Forest tool for interpretive analysis of increasingly complex data from newborn screening.

Keywords: Random Forest; false positive; inborn metabolic disorders; machine learning; newborn screening; second-tier testing; tandem mass spectrometry.