A convolutional neural network-based system to classify patients using FDG PET/CT examinations

BMC Cancer. 2020 Mar 17;20(1):227. doi: 10.1186/s12885-020-6694-x.

Abstract

Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality for oncology, the demands for automated detection systems on artificial intelligence (AI) to prevent human oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based system that can classify whole-body FDG PET as 1) benign, 2) malignant or 3) equivocal.

Methods: This retrospective study investigated 3485 sequential patients with malignant or suspected malignant disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying patients into the 3 categories. In addition, we performed a region-based analysis of CNN (head-and-neck, chest, abdomen, and pelvic region).

Results: There were 1280 (37%), 1450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal, respectively. In the patient-based analysis, CNN predicted benign, malignant and equivocal images with 99.4, 99.4, and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3% (head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively.

Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.

Keywords: Convolutional neural network; Deep learning; FDG; PET.

MeSH terms

  • Abdominal Neoplasms / classification
  • Abdominal Neoplasms / diagnostic imaging*
  • Adult
  • Aged
  • Aged, 80 and over
  • Artificial Intelligence
  • Female
  • Fluorodeoxyglucose F18
  • Head and Neck Neoplasms / classification
  • Head and Neck Neoplasms / diagnostic imaging*
  • Humans
  • Male
  • Middle Aged
  • Neural Networks, Computer*
  • Pelvic Neoplasms / classification
  • Pelvic Neoplasms / diagnostic imaging*
  • Positron Emission Tomography Computed Tomography / trends*
  • Thoracic Neoplasms / classification
  • Thoracic Neoplasms / diagnostic imaging*
  • Young Adult

Substances

  • Fluorodeoxyglucose F18