Diagnostic signature of the compressibility of the inertial-confinement-fusion pusher

Phys Rev E. 2020 Feb;101(2-1):023208. doi: 10.1103/PhysRevE.101.023208.

Abstract

Carbon shell areal density measurements from many types of inertial confinement fusion implosions at the National Ignition Facility (NIF) demonstrate that the final state of the outside portion of the shell is set primarily by capsule coast time, the coasting period between main laser shut off and peak fusion output. However, the fuel areal density does not correlate with the increasing carbon compression. While two-dimensional (2D) radiation-hydrodynamic simulations successfully capture the carbon compression, energy must be added to the simulated fuel-ice layer to reproduce fuel areal density measurements. The data presented demonstrates that the degradation mechanisms that reduce the compressibility of the fuel do not reduce the compressibility of the ablator.