Synergic effects of aerobic exercise and eugenol supplement on germ cell development and testicular tissue structure in chlorpyrifos-treated animal model

Environ Sci Pollut Res Int. 2020 May;27(14):17229-17242. doi: 10.1007/s11356-020-08222-4. Epub 2020 Mar 9.

Abstract

Insecticide chlorpyrifos (CPF) with increased oxidative stress, structural destruction, and hemostasis of testicular tissue leads to male infertility. The present study investigated the protective effect of exercise (Exe) and eugenol supplementation (Sup) on CPF-induced testicular spermatogenic disorders in male rats. In this experimental study, 21 adult male albino rats were divided into seven groups, control (Co: 6 weeks), CPF (6 weeks), Co + Oil (2 weeks healthy food and 4 weeks oil), Co + Dimethylsulfoxide (DMSO: 6 weeks), CPF + Sup (2 weeks CPF and 4 weeks CPF + Sup), CPF + Exe (2 weeks CPF and 4 weeks CPF + Exe), and CPF + Exe + Sup (2 weeks CPF and 4 weeks CPF + Exe + Sup) group. All treatments were done intraperitoneally (5 days a week). Exe groups were subjected to run at moderate exercise intensity for 5 days per week over 6 weeks. DMSO groups were administered to the equal volume of vehicle for 6 consecutive weeks. Finally, the animals were sacrificed with Co2 gas and then alterations in testicular histology and sperm parameters were evaluated. Protein expression of PLZF and IGFα in the CPF group showed a significant decrease compared with the control group (p ˂ 0.001 for both). It was shown that CPF + Exe + Sup (p ˂ 0.001) and CPF + Sup (p ˂ 0.01) groups had a significant increase in protein expression of PLZF, but the protein expression of IGFα showed a significant increase just in the CPF + Exe + Sup group (p ˂ 0.001). Also, CPF caused a significant decrease in Leydig counts, Sertoli cell count, spermatogonium counts, spermatocyte cell count, spermatid cell count, and tunica thickness as well as a significant increase in testicle diameter (p ˂ 0.01) and ducts diameter compared with the control group. It seems that aerobic exercise with eugenol supplementation suppresses the disruption effects of CPF on testicular tissue (cellular and structural) by increasing the antioxidant capacity and improving the secretion of sex hormones. Therefore, the aerobic exercise with supplement of the eugenol has potential therapeutic targets for male infertility that need further study.

Keywords: Chlorpyrifos; Eugenol; Exercise; IGFα; PLZF; Testicular tissue.

MeSH terms

  • Animals
  • Antioxidants
  • Chlorpyrifos*
  • Dietary Supplements
  • Eugenol
  • Insecticides*
  • Male
  • Models, Animal
  • Oxidative Stress
  • Rats

Substances

  • Antioxidants
  • Insecticides
  • Eugenol
  • Chlorpyrifos