Successively Regioselective Electrosynthesis and Electron Transport Property of Stable Multiply Functionalized [60]Fullerene Derivatives

Research (Wash D C). 2020 Feb 15:2020:2059190. doi: 10.34133/2020/2059190. eCollection 2020.

Abstract

With the recent advance in chemical modification of fullerenes, electrosynthesis has demonstrated increasing importance in regioselective synthesis of novel fullerene derivatives. Herein, we report successively regioselective synthesis of stable tetra- and hexafunctionalized [60]fullerene derivatives. The cycloaddition reaction of the electrochemically generated dianions from [60]fulleroindolines with phthaloyl chloride regioselectively affords 1,2,4,17-functionalized [60]fullerene derivatives with two attached ketone groups and a unique addition pattern, where the heterocycle is rearranged to a [5,6]-junction and the carbocycle is fused to an adjacent [6,6]-junction. This addition pattern is in sharp contrast with that of the previously reported biscycloadducts, where both cycles are appended to [6,6]-junctions. The obtained tetrafunctionalized compounds can be successively manipulated to 1,2,3,4,9,10-functionalized [60]fullerene derivatives with an intriguing "S"-shaped configuration via a novel electrochemical protonation. Importantly, the stability of tetrafunctionalized [60]fullerene products allows them to be applied in planar perovskite solar cells as efficient electron transport layers.