Thousands of candidate cancer biomarkers have been proposed, but so far, few are used in cancer screening. Failure to implement these biomarkers is attributed to technical and design flaws in the discovery and validation phases, but a major obstacle stems from cancer biology itself. Oncogenomics has revealed broad genetic heterogeneity among tumors of the same histology and same tissue (or organ) from different patients, while tumors of different tissue origins also share common genetic mutations. Moreover, there is wide intratumor genetic heterogeneity among cells within any single neoplasm. These findings seriously limit the prospects of finding a single biomarker with high specificity for early cancer detection. Current research focuses on developing biomarker panels, with data assessment by machine-learning algorithms. Whether such approaches will overcome the inherent limitations posed by tumor biology and lead to tests with true clinical value remains to be seen.
Keywords: biomarkers; clinical validation; discovery pipeline; early diagnosis; genetic heterogeneity; genome sequencing; oncogenomics; screening.
© 2020 WILEY Periodicals, Inc.