Recent studies have shown that microRNAs and long noncoding RNAs (lncRNAs) regulate the expression of drug metabolizing enzymes (DMEs) in human hepatic cells and that a set of DMEs, including UDP glucuronosyltransferase (UGT) 2B15, is down-regulated dramatically in liver cells by toxic acetaminophen (APAP) concentrations. In this study we analyzed mRNA, microRNA, and lncRNA expression profiles in APAP-treated HepaRG cells to explore noncoding RNA-dependent regulation of DME expression. The expression of UGT2B15 and lncRNA LINC00574 was decreased in APAP-treated HepaRG cells. UGT2B15 levels were diminished by LINC00574 suppression using antisense oligonucleotides or small interfering RNA. Furthermore, we found that hsa-miR-129-5p suppressed LINC00574 and decreased UGT2B15 expression via LINC00574 in HepaRG cells. In conclusion, our results indicate that LINC00574 acts as an important regulator of UGT2B15 expression in human hepatic cells, providing experimental evidence and new clues to understand the role of cross-talk between noncoding RNAs. SIGNIFICANCE STATEMENT: We showed a molecular network that displays the cross-talk and consequences among mRNA, micro RNA, long noncoding RNA, and proteins in acetaminophen (APAP)-treated HepaRG cells. APAP treatment increased the level of hsa-miR-129-5p and decreased that of LINC00574, ultimately decreasing the production of UDP glucuronosyltransferase (UGT) 2B15. The proposed regulatory network suppresses UGT2B15 expression through interaction of hsa-miR-129-5p and LINC00574, which may be achieved potentially by recruiting RNA binding proteins.
Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.