Large-Scale Transgenic Drosophila Resource Collections for Loss- and Gain-of-Function Studies

Genetics. 2020 Apr;214(4):755-767. doi: 10.1534/genetics.119.302964. Epub 2020 Feb 18.

Abstract

The Transgenic RNAi Project (TRiP), a Drosophila melanogaster functional genomics platform at Harvard Medical School, was initiated in 2008 to generate and distribute a genome-scale collection of RNA interference (RNAi) fly stocks. To date, it has generated >15,000 RNAi fly stocks. As this covers most Drosophila genes, we have largely transitioned to development of new resources based on CRISPR technology. Here, we present an update on our libraries of publicly available RNAi and CRISPR fly stocks, and focus on the TRiP-CRISPR overexpression (TRiP-OE) and TRiP-CRISPR knockout (TRiP-KO) collections. TRiP-OE stocks express single guide RNAs targeting upstream of a gene transcription start site. Gene activation is triggered by coexpression of catalytically dead Cas9 fused to an activator domain, either VP64-p65-Rta or Synergistic Activation Mediator. TRiP-KO stocks express one or two single guide RNAs targeting the coding sequence of a gene or genes. Cutting is triggered by coexpression of Cas9, allowing for generation of indels in both germline and somatic tissue. To date, we have generated >5000 TRiP-OE or TRiP-KO stocks for the community. These resources provide versatile, transformative tools for gene activation, gene repression, and genome engineering.

Keywords: CRISPR; Cas9; Drosophila; RNAi; knockout; overexpression; phenotypes; screens.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified / genetics*
  • CRISPR-Cas Systems
  • Databases, Genetic*
  • Drosophila melanogaster / genetics*
  • Gain of Function Mutation
  • Genetic Engineering / methods
  • Loss of Function Mutation