Long-lasting insecticidal nets, or LLINs, have significantly reduced malaria morbidity and mortality over the past two decades. The net provides a physical barrier that decreases human-mosquito contact and the impregnated insecticide kills susceptible mosquito vectors upon contact and may repel them. However, the future of LLINs is threatened as resistance to pyrethroids is now widespread, the chemical arsenal for LLINs is very limited, time from discovery of next-generation insecticides to market is long, and persistent transmission is frequently caused by vector populations avoiding contact with LLINs. Here we ask the question whether, given these challenges, insecticides should be incorporated in nets at all. We argue that developing long-lasting nets without insecticide(s) can still reduce vector populations and provide both personal and community protection, if combined with other approaches or technologies. Taking the insecticide out of the equation (i) allows for a faster response to the current pyrethroid resistance crisis, (ii) avoids an LLIN-treadmill aimed at replacing failing bed nets due to insecticide resistance, and (iii) permits the utilization of our current and future insecticidal arsenal for other vector control tools to target persistent malaria transmission.
Keywords: Insecticides; Malaria elimination; Resistance; Vector control.